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Abstract
Fisheries managers routinely use hatcheries to increase angling opportunity. Many hatcheries operate as segregated

programs where hatchery-origin fish are not intended to spawn with natural-origin conspecifics in order to prevent
potential negative effects on the natural-origin population. Currently available techniques to monitor the frequency
with which hatchery-origin strays successfully spawn in the wild rely on either genetic differentiation between the
hatchery- and natural-origin fish or extensive sampling of fish on the spawning grounds. We present a method to infer
grandparent–grandchild trios by using only genotypes from two putative grandparents and one putative grandchild.
We developed estimators of false-positive and false-negative error rates and showed that genetic panels containing
500–700 single-nucleotide polymorphisms or 200–300 microhaplotypes are expected to allow application of this tech-
nique for monitoring segregated hatchery programs. We discuss the ease with which this technique can be implemen-
ted by pre-existing parentage-based tagging programs and provide an R package that applies the method.

Fisheries managers have long used hatcheries to
increase angling opportunity and to compensate for
anthropogenic impacts that have decreased population
sizes (Waples et al. 2007). In some situations, it has been
observed that hatchery-origin fish have lower fitness in the
wild relative to natural-origin conspecifics, potentially due
to selection in the hatchery environment or the use of
hatchery strains that are not locally adapted (Ford 2002;
Miller et al. 2004; Araki et al. 2007a, 2007b, 2008; Chris-
tie et al. 2014). To prevent the negative effects of inter-
breeding between hatchery- and natural-origin fish, it has

been recommended that hatcheries operate as either inte-
grated or segregated programs (Hatchery Scientific Review
Group 2009). Integrated programs aim to balance the pro-
portion of natural-origin fish in the hatchery broodstock
and the proportion of hatchery-origin fish spawning natu-
rally to minimize the effect of domestication (Goodman
2005). Segregated programs intend to minimize gene flow
between hatchery- and natural-origin populations
(Mobrand et al. 2005; Hatchery Scientific Review Group
2009). These strategies, developed in the context of Pacific
salmon Oncorhynchus spp. hatcheries, represent alternative
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approaches to both protect natural-origin populations and
provide harvest opportunities for anglers.

In order to evaluate the efficacy of segregated hatchery
programs, a method of monitoring gene flow from
hatchery-origin fish to nearby natural-origin populations is
needed. This has been previously estimated in several
ways. Some studies estimate the proportion of fish on the
spawning grounds that are of hatchery origin through
observation of marks and/or tags present on hatchery fish
(Dauer et al. 2009; Tattam and Ruzycki 2020). This met-
ric is important, as it demonstrates the potential for com-
petition between hatchery- and natural-origin fish on the
spawning grounds and suggests that hatchery introgression
may be occurring. Alternatively, if the hatchery- and
natural-origin populations show sufficient genetic differen-
tiation, migration rates can be estimated from temporal
samples (van Doornik et al. 2013) or the genetic structure
of hatchery- and natural-origin populations can be evalu-
ated to determine whether the pattern indicates hatchery
introgression (Matala et al. 2012; Ozerov et al. 2016; Leh-
nert et al. 2020). All of these approaches have drawbacks.
Observing the proportion of hatchery-origin fish on the
spawning grounds, while suggestive, does not directly
assess gene flow, as the reproductive success of hatchery-
origin fish is unknown. Methods utilizing genetic differen-
tiation are not applicable to cases without sufficient
differentiation between the hatchery- and natural-origin
populations; such cases are common when hatchery stocks
have been derived from nearby natural-origin populations.

An alternative technique uses genetic samples to infer
relationships between hatchery broodstock and individuals
sampled in the wild. Hatchery broodstock can be geneti-
cally sampled at the time of spawning, and their genotypes
are later used to infer whether a given fish is a descendent
of hatchery broodstock. Parentage-based tagging (PBT)
uses this approach to identify offspring of the hatchery
broodstock for monitoring and management of hatchery
stocks (Anderson and Garza 2005, 2006). Parentage-based
tagging has been implemented and validated on large and
small scales for a variety of species (DeHaan et al. 2008;
Denson et al. 2012; Bingham et al. 2018; Evans et al.
2018; Campbell et al. 2019; Vandeputte et al. 2021), most
notably Pacific salmonids (Steele et al. 2013, 2019; Beac-
ham et al. 2019).

With appropriate methods for statistical inference, the
general approach of PBT can be extended to identify
grandchildren of hatchery broodstock. Genetic samples
can be taken from hatchery broodstock, and samples from
natural-origin fish can later be assessed to determine
whether they are grandchildren of those broodstock (and
therefore had an unsampled, hatchery-origin parent). The
relationship being inferred is a grandparent–grandchild
trio consisting of one grandchild and two grandparents on
the same side (i.e., either both maternal or both paternal

grandparents). The other two grandparents and the par-
ents are unsampled and therefore have unknown geno-
types (Figure 1). Although comprehensive sampling in the
hatchery is straightforward, similar sampling of adults
spawning naturally is often logistically prohibitive. The
ability to infer recent hatchery ancestry without sampling
naturally spawning parents would overcome this issue.

Methods have previously been developed for inferring
grandparent–grandchild relationships, but those methods
are not optimal for inferring grandparent–grandchild trios.
Letcher and King (2001) described a method for inferring
the relationship between all four grandparents and a
grandchild. To identify the offspring of hatchery strays,
this method requires sampling of natural-origin grandpar-
ents as well as hatchery broodstock, which is not feasible
in many situations. Christie et al. (2011) described a
method to infer grandparent–grandchild trios by identify-
ing trios with no observed Mendelian incompatibilities
(MIs; or less than a specified number of MIs). This
method has been successfully applied to situations in
which one parent is known (Christie et al. 2011; Sard
et al. 2016), but the lower power of exclusionary methods
compared to likelihood-based methods (Anderson and
Garza 2006) makes exclusionary methods less feasible
when no parents are sampled.

We here report a likelihood-based method to identify
grandparent–grandchild trios by using genotypes. Addi-
tionally, we develop techniques to estimate assignment
error rates for this method and provide an R package
(gRandma) implementing the described techniques (https://
github.com/delomast/gRandma).

METHODS
Inferring grandparent–grandchild relationships.—Relation-

ships have previously been inferred from genetic data
using likelihood ratios to compare the putative

FIGURE 1. The pedigree that the proposed method could be used to
infer (H = hatchery-origin fish; W = natural-origin fish).
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relationship (e.g., parent–offspring) to an alternative rela-
tionship (typically that the individuals are unrelated)
(Marshall et al. 1998; Anderson and Garza 2006; Kali-
nowski et al. 2007; Anderson 2012). Methods for calculat-
ing the likelihoods of relationships (simple pedigrees) have
previously been detailed (Thompson 1976, 2000; SanCris-
tobal and Chevalet 1997; Anderson and Garza 2006), and
we extended this approach specifically to grandparent–
grandchild trios. Given allele frequencies for a locus under
Hardy–Weinberg equilibrium (HWE), the likelihood of
the three individuals being unrelated was calculated as the
product of the probability of sampling each genotype from
the population. The likelihood of the individuals being a
grandparent–grandchild trio was calculated by utilizing
allele frequencies and the laws of Mendelian inheritance.
We accounted for genotyping error by marginalizing the
true genotypes utilizing estimates of genotyping error
(Anderson and Garza 2006). This allows genotyping error
to be flexibly modeled in any way that yields, for a given
true genotype, the probability of observing each genotype.
With the R package we provide, users can specify these
probabilities or utilize a default error model. The default
error model used in the present analyses is described in
Supplementary File 1 (available in the online version of
this article). Loci were considered to be independent, as in
previous methods of relationship inference and pedigree
reconstruction (Marshall et al. 1998; Riester et al. 2009;
Jones and Wang 2010; Anderson 2012; Huisman 2017).

Calculation of likelihoods for large numbers of possible
trios can be computationally intensive. We therefore imple-
mented a preliminary screen based on the observed number
of MIs in a grandparent–grandchild trio. Trios with more
than m MIs were excluded from consideration. The value of
m was chosen so that the probability of excluding a true
grandparent–grandchild trio was less than 0.0001 for a trio
with no missing genotypes. With a constant value of m, the
probability of rejecting a trio with one or more missing
genotypes is smaller, as a locus with a missing genotype can-
not be considered an MI. The probability of rejecting a true
trio given a value of m was calculated by representing the
number of MIs as a Markov chain following the method
detailed by Anderson (2012) but extended to the relation-
ship of grandparent–grandchild trio.

Assigning grandparent–grandchild relationships can be
treated as a hypothesis test by comparing the calculated
log-likelihood ratio (LLR) to a critical value c (SanCristo-
bal and Chevalet 1997; Anderson and Garza 2006). If the
LLR was greater than or equal to c, the trio was consid-
ered related; otherwise, the trio was considered unrelated.
The value of c can be chosen to achieve a desired balance
of false-negative and false-positive error rates.

False-positive error rates.— Per-comparison false-
positive error rates (the probability of assigning a relation-
ship to a trio that is not a grandparent–grandchild trio)

are dependent upon the true relationship for a trio. We
have implemented methods to assess false-positive error
rates for unrelated trios (typically the most important) as
well as 13 other types of relationships. In these relation-
ships, the two putative grandparents were considered unre-
lated to each other, but the putative grandparents had
different relationships to the putative grandchild. The rela-
tionships considered represented combinations of true
grandparents, individuals unrelated to the putative grand-
child, great-aunts, half-great-aunts, and first cousins of the
putative grandchild’s true grandparent.

Estimating the per-comparison false-positive error rate
for a given value of c has been demonstrated for parent–
offspring and sibling relationships using importance sam-
pling (Anderson and Garza 2006; Baetscher et al. 2018), a
Monte Carlo variance reduction technique. Variance
reduction is needed because a naı̈ve Monte Carlo
approach would be inefficient at estimating very small
false-positive rates (Anderson and Garza 2006). Small
error rates can be meaningful, as the experiment-wide
false-positive error rate is estimated by the product of the
per-comparison false-positive error rate and the number of
trios (with the corresponding true relationship) considered.
We extended this approach to the current application of
assessing grandparent–grandchild trios. We also imple-
mented an alternative method utilizing stratified sampling
—another Monte Carlo variance reduction technique—
because specific implementations of importance sampling
can produce unreliable results (Owen 2013).

Importance sampling.—A standard Monte Carlo esti-
mator of false-positive rates would be obtained by simu-
lating genotypes for trios of a given relationship (such as
unrelated) and recording how many fit the criteria to be
considered related. Importance sampling can be thought
of as focusing the simulation on producing mostly geno-
types that do assign and then correcting for this modifica-
tion. To implement importance sampling, we simulated
genotypes from the distribution of genotypes in true
grandparent–grandchild trios. Missing genotypes were
accounted for by utilizing the forward–backward algo-
rithm (described below) with the state of the Markov
chain representing the number of missing genotypes in one
individual. If the simulated trio had fewer than m MIs
and the calculated LLR was greater than or equal to c,
the observation was recorded as a false positive, with the
appropriate importance sampling weight (Owen 2013).

Stratified sampling.— Similar to importance sampling,
the goal of stratified sampling was to focus simulation
effort on categories (strata) that produce false positives.
We stratified the distribution of trio genotypes by the
number of observed MIs. This was a natural choice
because the algorithm we use explicitly filters possibilities
based on the number of observed MIs. Therefore, we can
eliminate simulating genotypes for most strata. Sampling
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effort can then be focused on trios with m or fewer MIs.
This method requires calculating the probability that a
trio of given relationship has a given number of observed
MIs and requires the ability to simulate genotypes for a
trio given a relationship and number of MIs. Genotypes
for trios were simulated in each stratum, and the false-
positive rates were recorded. Utilizing the probabilities
that a trio has each number of MIs (i.e., the size of the
strata), the overall false-positive rate was then calculated.

To calculate the probability that a trio has a given
number of observed MIs, we represented the observation
of MIs and missing genotypes as a Markov chain and uti-
lized the forward step of the forward–backward algorithm.
We extended the approach described by Anderson (2012)
to account for the common practice of only analyzing
samples given a maximum number of missing genotypes
(d) and to fit the target relationships. The value of d in the
current analyses was 10% of loci. Let si be the state,
describing the number of observed MIs and missing geno-
types, after observing locus i. Prior to observing any loci,
s0 ¼ 0, 0, 0, 0ð Þ, representing the number of observed
MIs and number of missing genotypes for the three indi-
viduals. Let ai be a vector indicating whether an MI or
any missing genotypes are observed at locus i, in the same
order as si. Assuming HWE, known allele frequencies,
known locus-specific probabilities of a genotype being
missing, and that the observation of missing genotypes is
independent across loci and individuals, the probabilities
of each possibility for ai can be calculated according to
standard probability arguments for a given true relation-
ship. The probability of being in state x after a given locus
can then be calculated as

P siþ1 ¼ xð Þ ¼ P sið Þ∑
a
P aiþ1ð ÞIðsi þ aiþ1 ¼ xÞ: (1)

This can be evaluated recursively to obtain the probabili-
ties of each final state. The probability that a trio has a
given number of observed MIs conditional on d can then
be calculated.

However, memory constraints make saving all of the
probabilities at each step impractical, even with moderate
numbers of loci. We can save only the probabilities of states
with m or fewer MIs and with all three individuals having d
or fewer missing genotypes to reduce memory usage. These
values are divided by the probability that all members have
d or fewer missing genotypes to obtain probabilities of being
in each state conditional on d. The probability of observing
an individual with more than d missing genotypes can be
obtained through the same algorithm (forward step), but
with s and a now only representing missing genotypes in
one individual. Because we assumed that missing genotypes
are independent between individuals (given locus-specific
rates of missing genotypes), the probability of all three sam-
ples having d or fewer missing genotypes is straightforward

to calculate using the obtained probability that one individ-
ual has more than d missing genotypes.

To utilize stratified sampling, we need to simulate geno-
types for trios with a specified number of MIs. The back-
ward step of the forward–backward algorithm fills this
need. Given L loci, a value of sL is chosen given the num-
ber of MIs by sampling a categorical distribution with
probabilities proportional to the probability of each sL
that has the specified number of MIs (and an allowable
number of missing genotypes). Next, for each locus and
iterating backward, a value for ai is chosen by sampling a
categorical distribution with

P aijsiþ1ð Þ / P aið ÞP si ¼ siþ1 � aið Þ: (2)

Once ai is chosen, genotypes are sampled using the
genotype frequencies for the true relationship calculated
from the allele frequencies, HWE, the laws of Mendelian
inheritance, and genotyping error rates. If all three geno-
types are observed (i.e., no missing genotypes in the cho-
sen ai), then the genotypes are either sampled conditional
upon an MI being present or not.

False-negative error rate.— To estimate the per-
comparison false-negative error rate (probability of failing
to assign a relationship to a true grandparent–grandchild
trio) for a given value of c, Monte Carlo methods have
been previously used for other relationships (Anderson
and Garza 2006; Baetscher et al. 2018), and we adopted
this strategy here. Genotypes of grandparent–grandchild
trios are simulated, and loci with missing genotypes for
each individual are chosen by representing the observation
of missing genotypes as a Markov chain and utilizing the
forward–backward algorithm as described above, with the
state representing the number of missing genotypes in one
individual. Log-likelihood ratios were calculated for the
simulated genotypes, and the proportion of trios with the
number of MIs greater than m or with LLRs less than c
was the estimate of the false-negative rate.

Panel size simulations and error rate estimator
evaluation.—A key question for designing experiments
implementing this method is “How many loci need to be
genotyped to obtain reliable assignments?” To help answer
this question, we estimated error rates for panels of differ-
ent size. We simulated panels containing 100, 300, 500,
700, and 900 biallelic single-nucleotide polymorphisms
(SNPs) and panels containing 100, 200, 300, and 400 trial-
lelic microhaplotypes. The SNPs and microhaplotypes
were simulated with expected heterozygosity of 0.22 (allele
frequencies of 0.125 and 0.872) and 0.42 (allele frequencies
of 0.13, 0.13, and 0.74), respectively. This choice reflects
the mean expected heterozygosities for SNPs and microha-
plotypes in a comparison of both marker types for rela-
tionship inference in Kelp Rockfish Sebastes atrovirens
(Baetscher et al. 2018). The power of a given marker for
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kinship inference is directly related to its variability
(Anderson and Garza 2006). Although we investigated
marker panels of differing size but fixed variability, power
similar to that of the simulated panels could be achieved
with fewer, more variable markers. The probability of a
missing genotype at a locus was set at 3% in these ana-
lyses. It is common practice to remove any samples with
more than a threshold number of missing genotypes;
therefore, we restricted all simulated genotypes to have
90% or more genotypes present. Given a true relationship
of unrelated, the false-negative and false-positive error
rates were estimated for a range of c-values and the rela-
tionship between error rates was compared between
panels. Integer values of c were chosen starting at 0 and
increasing until the estimated false-negative rate was
above 0.05. Estimates of false-negative rates and estimates
from the importance sampling method were derived from
10,000 and 1,000,000 Monte Carlo iterations, respectively.
Estimates from the stratified sampling routine were
derived from 1,000,000 iterations for each stratum (i.e.,
number of observed MIs) less than or equal to m.

To compare performance of the two methods for esti-
mating false-positive error rates, we compared the esti-
mated error rates for unrelated trios between the methods
with all four simulated microhaplotype panels. Estimates
for other true relationships were compared using the 300-
locus microhaplotype panel. Finally, to examine the
importance of modeling the presence of missing genotypes,
we compared importance sampling estimates using the
300-locus microhaplotype panel with the probability of a
genotype being missing equal to 3% and 0%.

The scripts used to perform these simulations and
their outputs are available at https://github.com/delomast/
gpError2021.

Example analyses.— To fully evaluate per-comparison
false-positive error rates, one needs to have a general
idea of the size of the analysis (number of comparisons)
being attempted. We consider two examples modeled
around steelhead O. mykiss hatchery programs in the
Snake River basin by using data collected during 2018.
The Upper Salmon River B-run (USB) represents a smal-
ler hatchery program and spawned 66 steelhead in 2018.
The Dworshak National Fish Hatchery (DNFH) repre-
sents a larger hatchery program and spawned 1,778
steelhead in 2018. Both of these hatchery programs take
genetic samples from all broodstock and record the day
of spawning, phenotypic sex, and crosses made. Data
collected at the hatchery (or a genetic sex marker) can
be used to constrain the number of possible pairs of
grandparents considered in an analysis. For each hatch-
ery program, we consider the effect on the desired per-
comparison false-positive rate of using no data, pheno-
typic sex, spawn day, phenotypic sex and spawn day, or
cross records.

In the example analysis, we assume that natural-origin
juveniles are sampled and that the exact age is unknown
but is constrained to 1, 2, or 3 years. The effect of this
assumption is that three potential years of parents must be
considered for each juvenile. Hatchery-origin steelhead in
the Snake River basin return almost exclusively as 3- and
4-year-old fish (Warren et al. 2017), so this translates to 4
years of potential grandparents that must be considered.

The total number of comparisons in these analyses is
the product of the number of possible pairs of grandpar-
ents per year, the number of years of potential grandpar-
ents being considered (4 years), and the number of
potential grandchildren evaluated (assumed here to be
200). We then calculate the desired per-comparison false-
positive (true relationship of unrelated) error rate to
achieve an expected number of false-positive assignments
of 0.1 (0.1/number of comparisons), assuming that all trios
are unrelated. This ignores false positives arising from
trios of other relationships. In some situations, error rates
for alternative relationships are important to consider, but
in analyses of segregated hatchery programs (where no
breeding of hatchery- and natural-origin fish is desired),
false positives arising from trios of other relationships are
not necessarily harmful, as the purpose is to identify fish
with recent hatchery-origin ancestry.

RESULTS
Estimated error rates declined with increasing panel

size, and the microhaplotype panels showed lower error
rates than SNP panels of similar size (Figure 2). For
example, false-positive error rates (true relationship of
unrelated) below 10−10 were achieved at false-negative
error rates below 0.05 with SNP panels containing 700 or
more loci and microhaplotype panels containing 300 or
more loci. False-positive rates for related trios decreased
with decreasing relatedness between individuals in the trio
(Supplemental Figure 1 available in the online version of
this article).

False-positive rates estimated by importance sampling
and stratified sampling were practically identical when esti-
mates were above approximately 10−8 (Figure 3). As the
false-positive rate decreased below this, the importance
sampling method estimated false-positive rates that were
higher than those estimated by the stratified sampling
method. In these cases, the stratified sampling method esti-
mated false-positive rates of 0 within one or more strata
(i.e., no false positives were sampled out of the 1,000,000
iterations). Similar results were obtained for false-positive
rates estimated for trios with relationships other than unre-
lated (Figure 4), except for two trio types (true grandparent
and unrelated; true grandparent and cousin of grandparent)
that had noticeably different estimates between the two
methods and did not have a low false-positive rate.
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Incorporating a 3% missing genotype rate in the error
rate estimation had a moderate effect on the results (Fig-
ure 5). For example, at a false-negative rate of 0.05, the
false-positive (true relationship of unrelated) error rates
were approximately (derived from linear interpolation
with neighboring points) 1.3 × 10−11 and 2.1 × 10−12 when
missing genotypes had rates of 3% and 0%, respectively.

The example hatchery programs considered show that
analysis of smaller programs (e.g., USB) requires per-
comparison false-positive rates on the order of 10−6 to 10−8,
depending on what data, if any, are available to reduce the
number of comparisons (Table 1). Larger programs similar
to DNFH require rates on the order of 10−7 to 10−10 if
the number of comparisons can be reduced by one of the
data sources considered. Error rates estimated for the
simulated panels (Figure 2) suggest that these rates can be
achieved with panels containing 500–700 SNPs or 200–300

microhaplotypes. If no data are available to reduce the
number of pairs of grandparents that must be considered,
then hatchery programs that are similar in size to DNFH
(1,700 fish spawned per year) will require error rates on the
order of 10−11, which is achievable with panels containing
700–900 SNPs or 300–400 microhaplotypes.

DISCUSSION
The methods developed here facilitate direct monitoring

of introgression between hatchery- and natural-origin popu-
lations without relying on genetic differentiation. This fills an
unmet need for monitoring the segregated hatchery programs
upon which many fisheries rely. The method identifies fish
with an unsampled, hatchery-origin parent by using genetic
samples from the hatchery broodstock and estimates error
rates given allele frequencies for a population.

FIGURE 2. Error rates estimated by importance sampling for simulated (A) single-nucleotide polymorphism panels and (B) microhaplotype panels
with varying numbers of loci.
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Another benefit of this method is the ease with which it
can be implemented through existing PBT programs
because the hatchery and laboratory processes that are
required to sample and genotype broodstock are already
in place. Additional requirements for grandparent infer-
ence would be the development of a genetic panel with
sufficient power (given the size of the relevant hatcheries)
and collection of samples from natural-origin fish that are
potential grandchildren of the hatchery broodstock. In the
past decade, there have been multiple large-scale demon-
strations of the efficacy of PBT for monitoring fisheries
(Steele et al. 2013, 2019; Beacham et al. 2019). Numerous
PBT programs have been recently reported (Bingham et
al. 2018; Evans et al. 2018; Campbell et al. 2019; Vande-
putte et al. 2021), and current tagging technologies can be
replaced by PBT to provide additional benefits at similar
or reduced costs (Beacham 2021). This implies that PBT
will continue to grow in usage, and the method described
here will become feasible for a larger number of hatchery
programs.

The simulated microhaplotype panels demonstrated
that error rates low enough for relatively large analyses of
segregated hatchery programs are achievable with panels
containing 300–400 microhaplotypes. The size/power
required from the genetic marker panel will depend on the
data available to limit the number of comparisons. As has
been previously demonstrated, the availability of accurate
hatchery cross records greatly reduces the power required

for grandparent inference (Letcher and King 2001), but
we note that simply having sex information associated
with a broodstock individual’s genotype can have a sizable
effect (Table 1). Panels genotyping hundreds of loci have
been created using cost-effective amplicon sequencing
techniques (Campbell et al. 2015; Janowitz-Koch et al.
2019); thus, we conclude that grandparent inference with
this method is feasible using current genotyping
techniques.

Application of this method at larger scales will require
considering potential grandparents from multiple hatcher-
ies. In these situations, having data available to reduce the
number of comparisons can be critical for making an
analysis feasible. For example, if natural-origin steelhead
are sampled at Lower Granite Dam on the Snake River
(Hargrove et al. 2021), then all steelhead hatcheries adja-
cent to and upstream of the dam must be considered
(~5,000 total steelhead spawned annually). With no data
other than the year and hatchery at which fish were
spawned, the number of potential pairs of grandparents
would be approximately 5.5 × 106 each year, while consid-
ering phenotypic (or genetic) sex would reduce this to
1.4 × 106 (Idaho Department of Fish and Game,
unpublished).

We expect this method to be most applicable for asses-
sing segregated hatchery programs. For some closely related
trios, false-positive error rates were relatively high with
the 300-microhaplotype panel (Supplemental Figure 1). For

FIGURE 3. Comparison of false-positive (true relationship of unrelated) error rates for simulated microhaplotype panels estimated by importance
sampling and stratified sampling. The black line represents y= x. Points shown on the y-axis had an estimated error rate of 0 from stratified sampling.
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FIGURE 4. Comparison of false-positive error rates estimated by importance sampling and stratified sampling for related trios with the simulated
300-locus microhaplotype panel. The black line represents y= x. The two putative grandparents were unrelated to each other. The relationship labels
indicate the relationship of the two putative grandparents to the putative grandchild. When the label specifies only one relationship, both putative
grandparents have the same relationship to the putative grandchild. “True” is true grandparent, “GAunt” is great-aunt, “HGAunt” is half-great-aunt,
“GpCous” is first cousin to the putative grandchild’s true grandparent, and “Unrel” is unrelated. The inset gives a magnified view of the region
containing error rates close to 1.

FIGURE 5. Error rates estimated by importance sampling for the simulated 300-locus microhaplotype panel with two rates of missing genotypes: 3%
(Missing) and 0% (No missing). The false-positive error rate is the rate for unrelated trios.

92 DELOMAS AND CAMPBELL



all analyses, the impact of these error rates is mediated by
the infrequency of comparisons involving closely related
individuals. When analyzing segregated programs, false
positives from closely related trios may not negatively
impact conclusions, as they indicate recent hatchery ances-
try. However, when analyzing integrated hatchery pro-
grams, distinguishing trios with different relationships can
be important. Application of this method could then either
be infeasible or require a more powerful genetic panel.
Additionally, the number of relationships for which we
provide estimators covers trios with a range of relatedness
but is not exhaustive. In some specific cases, other rela-
tionships may be present at impactful frequencies. For
example, if generations overlap substantially, then the
impact of trios containing aunts, half-aunts, and first cous-
ins may need to be considered.

The method developed here addressed shortcomings of
previously developed methods for grandparent inference
with moderately sized genetic panels. Previous methods
either required that all four grandparents were sampled
(Letcher and King 2001) or used an exclusionary method
that inherently had lower power than likelihood-based
methods (Christie et al. 2011). Additionally, the exclusion-
ary method did not provide a formal treatment of geno-
typing error. Applications of the exclusionary method
(Christie et al. 2011; Sard et al. 2016) have utilized panels
of tens of microsatellites. When using SNPs or microha-
plotypes, hundreds or thousands of loci are typically geno-
typed and minimal error rates (e.g., 1%) still result in
errors being present in a majority of individuals. An addi-
tional effect of ignoring genotyping error in an exclusion-
ary method is that false negatives are implicitly assumed
not to occur. It is worth noting that use of a Markov
chain to model the number of observed MIs and missing

genotypes in a trio, as we developed here, could be incor-
porated into the exclusionary method. This would allow
both the formal incorporation of genotyping error and the
estimation of false-positive and false-negative error rates.

Importance sampling and stratified sampling have dif-
ferent weaknesses, making each better suited to different
situations. For example, importance sampling can perform
suboptimally when the estimate is dominated by a small
fraction of samples (Owen 2013). Stratified sampling does
not have this same drawback, but it can fail to give a
meaningful estimate when the false-positive rate within a
particular stratum is low enough that a reasonable number
of samples cannot estimate it accurately. Comparison of
the importance sampling and stratified sampling methods
showed that when the true relationship was unrelated,
they estimated essentially the same false-positive rate when
that rate was above approximately 10−8. This suggests
that the importance sampling routine performed well for
unrelated trios. At lower false-positive rates, the stratified
sampling estimates were lower (and in some cases 0) than
those from importance sampling. In these cases, one or
more strata had estimates of 0, indicating that the
1,000,000 samples taken were not sufficient to observe one
or more false positives. This finding demonstrates one of
the strengths of importance sampling compared to strati-
fied sampling—that some situations will have false-
positive rates small enough that they cannot be efficiently
estimated by this stratified sampling routine. This is fur-
ther emphasized by the greater computational effort
devoted to stratified sampling in this study (1,000,000 iter-
ations in each stratum versus 1,000,000 iterations total).

For false-positive error rates under relationships other
than unrelated, the importance sampling and stratified
sampling estimates were again largely the same. For a few

TABLE 1. Desired per-comparison false-positive (true relationship of unrelated) error rates for analyses using different data sources to reduce the
number of comparisons for steelhead (USB = Upper Salmon River B-run; DNFH = Dworshak National Fish Hatchery).

Hatchery Data used

Number
of possible

crosses per year

Years of
potential

grandparents

Number of
potential

grandchildren
Number of
comparisons

Desired
per-comparison

false-positive error rate

USB None 4,290 4 200 3,432,000 2.91 × 10−8

Sex 1,088 870,400 1.15 × 10−7

Spawn day 584 467,200 2.14 × 10−7

Spawn day
and sex

162 129,600 7.72 × 10−7

Cross records 34 27,200 3.68 × 10−6

DNFH None 3,134,670 4 200 2,507,736,000 3.99 × 10−11

Sex 769,348 615,478,400 1.62 × 10−10

Spawn day 284,270 227,416,000 4.40 × 10−10

Spawn day
and sex

69,709 55,767,200 1.79 × 10−9

Cross records 1,003 802,400 1.25 × 10−7
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cases in which one potential grandparent was the true
grandparent and the other was not, the estimates were
noticeably different and the stratified sampling method
achieved at least 150 false-positive observations in each
stratum. This suggests that for these relationships, the
importance sampling method may have performed subop-
timally. Similar observations were made for importance
sampling estimates of false-positive error rates in parent-
age inference, where performance of a given importance
distribution varied depending on the true relationship for
which an error rate was estimated (Anderson and Garza
2006). One strategy would be to design an alternative
importance distribution, but for closely related trios, the
error rates for most panels will likely be high enough that
they are amenable to stratified sampling.

The current method assumes that loci are in linkage
equilibrium. If loci are physically linked (but still in equi-
librium), the methods described here can be applied with
some additional consideration. Physical linkage of two
loci will result in grandchildren being more likely to
inherit alleles at both loci from one of the two grandpar-
ents in a trio. The estimated false-positive (when the true
relationship is unrelated) error rates are not affected
because unrelated individuals are not impacted by physi-
cal linkage. For the other estimated error rates (false pos-
itives for trios with other relationships and false
negatives), the simulated LLRs will have lower variance
than the true distribution, causing error rates to be
underestimated.

One drawback of the method as implemented is that
computational efficiency decreases with increasing num-
bers of alleles per locus. This is partly due to the flexibility
of the genotyping error model and the need to marginalize
over all possible true genotypes. In the current implemen-
tation, computation is sped up by precomputing likelihood
values for observed trio genotypes at each locus. This
strategy works well when the number of alleles per locus
is small, but it can become impractically slow as the num-
ber of alleles increases. As such, the current implementa-
tion will be most suitable to panels containing biallelic
SNPs and microhaplotypes, which in our experience
typically have three to five alleles. For panels of highly
variable loci, a different implementation of this method,
particularly with a more streamlined genotyping error
model, would be necessary.
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